Next-Generation KPIs for Next-Generation Voice Services

The European Telecommunications Standards Institute ETSI – known for globally adopted standards, such as UMTS, 4G and TETRA – has published TR 103 639. It describes a framework for timeslice measurement methodologies and metrics assessing the characteristics of RTP-based voice communications. The well-known and widely used SIP signaling KPIs defined in IETF RFC 6076 can now be complemented by meaningful RTP media KPIs to obtain a complete picture of voice service quality.
The key performance indicators defined in IETF RFC 6076 and in ETSI TR 103 639 (for RTP media) jointly provide a means to fully assess a network’s VoIP service performance. RFC 6076 KPIs summarize SIP signaling performance, i.e. the general ability to set up and tear down calls, the ability of users to register, the associated delays, durations, etc. In addition, ETSI’s new Technical Report fills a long-standing gap in the telecommunications industry by enabling the definition of timeslice KPIs, i.e. media performance metrics based on fixed duration time intervals. Voipfuture's Qrystal combines both approaches into one powerful tool.
It is safe to say that the RFC 6076 KPIs define the de-facto standard in terms of control plane monitoring for VoIP services and Voipfuture Qrystal supports all of them.

Key performance Indicators (KPI) as defined in IETF’s RFC 6076

<table>
<thead>
<tr>
<th>4. SIP Performance metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. Registration Request Delay (RRD)</td>
</tr>
<tr>
<td>4.2. Ineffective Registration Attempts (IRAs)</td>
</tr>
<tr>
<td>4.3. Session Request Delay (SRD)</td>
</tr>
<tr>
<td>4.3.1. Successful Session Setup SRD</td>
</tr>
<tr>
<td>4.3.2. Failed Session Setup SRD</td>
</tr>
<tr>
<td>4.4. Session Disconnect Delay (SDD)</td>
</tr>
<tr>
<td>4.5. Session Duration Time (SDT)</td>
</tr>
<tr>
<td>4.5.1. Successful Session Duration SDT</td>
</tr>
<tr>
<td>4.5.2. Failed Session Completion SDI</td>
</tr>
<tr>
<td>4.6. Session Establishment Ratio (SER)</td>
</tr>
<tr>
<td>4.7. Session Establishment Effectiveness Ratio (SEER)</td>
</tr>
<tr>
<td>4.8. Ineffective Session Attempts (ISAs)</td>
</tr>
<tr>
<td>4.9. Session Completion Ratio (SCR)</td>
</tr>
</tbody>
</table>

What about voice quality?

The media plane quality somehow has to do with the MOS, but it cannot be easily applied to VoIP service monitoring. The MOS is originally an empirical measurement of subjective voice quality. The ITU-T Recommendation P.800 defines a procedure for how ‘subjects’, i.e. real people, should score the quality of a conversation or an audio stream on a scale of 1 (‘Bad’) to 5 (‘Excellent’). The average of a series of tests with different subjects constitutes the MOS. The entire process is well-defined down to seemingly odd details, such as the decoration of the cabinets where the subjects should be seated.

Passive monitoring systems try to estimate this empirical MOS for actual phone calls. Unfortunately, the process of this estimation is not so well-defined. For example, P.800 suggests that listening tests should be done using audio samples with a duration between 4 and 15 seconds. How can this be transferred to the automatic analysis of calls which last minutes or even hours? The Voipfuture whitepaper ‘MOS Calculation & Aggregation’ describes how we address this question through our fixed time slicing technology.

The ETSI media KPI system

ETSI TR 103 639 describes a framework for timeslice measurement methodologies and metrics assessing the characteristics of RTP-based voice communications. Timeslicing creates uniform blocks of measurement data with high detail and uniform duration. Timeslice KPIs let voice service providers create accurate statistics per mobile network cell, enterprise customer trunk, route, destination or any other entity of interest.
A recap: time slicing the media plane

To assess accurate listening quality we have to calculate estimates for fixed 5 second time slices of every RTP stream. The MOS estimates are based on the E-Model defined in ITU-T G.107 using a number of input parameters, such as

- The codec
- Information about burst loss, i.e. consecutive packet loss
- Information about the critical loss density, i.e. the number of packets received in between loss events
- Information about individual packet interarrival times

All quality data of a time slice is summarized in a quality data record (QDR). On top of the MOS each QDRs contains information about the transport quality, policy conformance and standard conformance as well as automatic root cause indicators. This makes QDRs atomic units of quality summarizing all relevant characteristics of each RTP stream segment.

The fixed time slicing approach has been recommended by the TM Forum to account for the varying nature of voice quality in IP networks. Simple averaging per call leads to a significant loss of information.

For example, the average quality of a perfect 5-minute call that suffers from severe impairments in the last 10 seconds will be close to perfect. Nevertheless, the parties will hang up and complain about bad user experience. Averaged metric data does not help to troubleshoot or even just confirm any problems. Obviously, statistics based on such inaccurate data are hardly useful.
Atomic units of RTP quality offer different perspectives on the media plane:

- End-to-end vs. mid-point
- Service vs. network
- Volume vs. session
ETSI’s new KPI system offers different perspectives on the media quality of a VoIP service. For example, it offers two types of media plane KPIs defined by their scope: mid-point KPIs and end-to-end KPIs. The former provide a view on the quality as measured at a specific point in the network, e.g. at an interconnection. The latter describe the quality of entire calls using the measurements closest to the calling parties, thereby giving insights into the actual user experience.

Another perspective is given by the definition of ‘media quality’. Since each time slice contains information about the MOS as well as technical parameters, such as packet loss and jitter, one can independently assess the estimated user experience and the network’s transport quality. This is useful as technical issues may not always have an impact on the user experience, but frequently serve as an early warning of upcoming issues.

Finally, time slices can be aggregated to different levels, e.g. to fixed time units such as minutes, to the level of an RTP stream or to the level of a call. This dimension provides insights into the distribution of quality across a group of streams and allows to compare the overall traffic quality versus degradation of individual calls.

Together the dimensions of scope, quality definition and aggregation level offer different views on the service quality:

- **End-to-end Perspective**: Focused view on the quality on a call-level, i.e. as perceived by the endpoints of communication
- **Mid-point Perspective**: Focused view on the quality at specific points in the network, e.g. at network boundaries
- **Service Perspective**: Focused view on the media quality of the service in terms of the customer experience
- **Network Perspective**: Focus on the technical quality of service or network transport performance
- **Volume Perspective**: Focus on quality per minute (relying on time slices) indicating overall quality of the observed traffic
- **Session Perspective**: Focus on quality for entire streams indicating distribution of quality across call sessions.

The Voipfuture media KPI system provides exactly these views on the media plane thereby complementing standard control plane KPIs.

<table>
<thead>
<tr>
<th>GMR</th>
<th>Good Minute Ratio</th>
<th>CMR</th>
<th>Critical Minute Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSR</td>
<td>Good Stream Ratio</td>
<td>CSR</td>
<td>Critical Stream Ratio</td>
</tr>
<tr>
<td>GCR</td>
<td>Good Call Ratio</td>
<td>CCR</td>
<td>Critical Call Ratio</td>
</tr>
</tbody>
</table>
Understanding service quality

<table>
<thead>
<tr>
<th>Insights and use cases</th>
<th>mid-point</th>
<th>end-to-end</th>
</tr>
</thead>
<tbody>
<tr>
<td>control plane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network-centric view on service availability & SIP signaling performance</td>
<td></td>
<td>User-centric view on service availability & SIP signaling performance</td>
</tr>
<tr>
<td>Monitoring of availability & signaling performance of interconnection partners</td>
<td>Monitoring service availability and signaling performance from a customer perspective</td>
<td></td>
</tr>
<tr>
<td>media plane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network-centric view on voice quality & network performance</td>
<td>User-centric view on voice quality & network performance</td>
<td></td>
</tr>
<tr>
<td>Monitoring voice quality at interconnections & quality of network segments</td>
<td>Monitoring of in-call user experience & overall network performance</td>
<td></td>
</tr>
</tbody>
</table>
Mid-point KPIs

Mid-point metrics are used to measure the quality directly at network boundaries, i.e. typically close to Session Border Controllers. This is done to monitor the traffic sent by an interconnection partner or when reporting on the quality of one’s own traffic for an SLA. The following defines the four mid-point KPIs of the media KPI system, which can be calculated for any group of RTP streams as defined by time, probing point, origination and destination, direction, trunk association etc.

Good Minute Ratio (GMR)
This KPI is used to measure the overall quality of the measured voice traffic as perceived by the users. The GMR (Good Minute Ratio) reflects the proportion of ‘good’ RTP stream minutes over all minutes. A ‘good minute’ is a set of time slices representing one minute, where all time slices have a MOS above 4.0. The good minute ratio is calculated as follows:

\[\text{GMR} = \frac{\text{# good minutes}}{\text{total number of minutes}} \]

The GMR is calculated for narrowband and wideband MOS scales.

Good Stream Ratio (GSR)
This metric is used to determine the fraction of RTP streams that are of good quality as perceived by the user. A ‘good stream’ is a RTP stream, where all measured time slices have a MOS above 4.0. The good stream ratio is calculated as follows:

\[\text{GSR} = \frac{\text{# good streams}}{\text{total number of streams}} \]

The GSR is calculated for narrowband and wideband MOS scales.

The GMR and GSR are utilized to measure the quality at specific points in the network.
Both KPIs are based on the MOS and thus make a statement about the estimated user experience. Qrystal offers similar KPIs to assess the network performance based on RTP stream measurements.

Critical Minute Ratio (CMR)
This metric is utilized to measure the overall technical quality of the measured RTP traffic. A ‘critical minute’ is a set of time slices representing one minute, where all time slices have critical impairments. The following issues are regarded ‘critical’:

• Packet burst losses and
• Severe jitter that effectively leads to gaps in the audio playout.

The critical minute ratio is calculated as follows:

\[\text{CMR} = \frac{\text{# critical minutes}}{\text{total number of minutes}} \]

The best value for this KPI is 0%, meaning that little to no minutes with critical transport impairments have been monitored.

Critical Stream Ratio (CSR)
This metric is used to determine the fraction of RTP streams that are impacted by critical impairments. A ‘critical stream’ is an RTP stream, where at least one measured time slice has a critical impairment. The critical stream ratio is calculated as follows:

\[\text{CSR} = \frac{\text{# critical streams}}{\text{total number of streams}} \]

The best value for this KPI is 0%, which means that little or no streams with critical transport impairments have been monitored.
End-to-end KPIs

As stated before GMR, GSR, CMR and CSR have their use cases in assessing the quality at network and domain boundaries. Other use cases require a call-based, end-to-end, view, which better reflects the actual user experience. End-to-end KPIs for the media plane are based on quality-enriched call detail records (CDR), which contain data related to the call signaling as well as to the in-call media quality. Such CDRs can summarize the time slice data of a call’s RTP streams, e.g. by storing the minimum, average and maximum MOS value as well as transport quality metrics for each call direction.

A single RTP stream going from one call party to another may be measured a number of times at different monitoring points. Which measurements should be included in the CDR, which is the most relevant in terms of the user experience? Since the quality of a media stream can only degrade as it flows through the network, the measurement closest to the media’s playout point is the most relevant. For the media direction from A-party to B-party, the measurement closest to the B-party best reflects the user experience and vice versa.

Selecting the most relevant measurements is crucial, but does not yet define the quality of a call. MOS - according to ITU-T Recommendation P.800 - is only defined for audio sequences with a duration between 4 and 15 seconds. Typical phone calls are much longer and time slicing will generate a lot of quality data that needs to be aggregated per call direction. This can be done in a number of ways, but ETSI proposes to use the GMR and CMR as described above. Further aggregation of quality to the level of a complete call needs to consider the quality for both media directions. Possible metrics include the minimum quality or the average quality of the media directions. However, looking at groups of calls it becomes obvious that the conventional approach of repeatedly averaging MOS (or any other quality metric for that matter) is very problematic. Taken to the extreme one would average MOS of all time slices for each direction, calculate the average MOS of the two directions and then average over all MOS values per call. This approach will conceal any issues revealed by the measurements. ETSI TR 103 639 therefore extends the concepts introduced for mid-point KPIs to the call-level and defines two KPIs based on the definition of ‘good’ and ‘critical’ calls.

Good Call Ratio (GCR)

This metric is used to determine the fraction of calls that are of good quality as perceived by the users. A ‘good call’ is a call where the stream received by the A-party and the stream received by the B-party are good streams as defined above. (Both streams as measured closest to the respective listening parties.) The good call ratio is calculated as follows:

\[\text{GCR} = \frac{\text{# good calls}}{\text{total number of calls}} \]

The GCR is calculated for narrowband and wideband MOS scales.

Critical Call Ratio (CCR)

This metric is used to determine the fraction of calls that are impacted by critical impairments of the media streams. A ‘critical call’ is a call, where at least one call direction has a critical impairment. The critical call ratio is calculated as follows:

\[\text{CCR} = \frac{\text{# critical calls}}{\text{total number of calls}} \]

The best value for this KPI is 0%, which means that no calls with critical transport impairments have been monitored.
Quality of Experience & the position of measuring points

The nearer to the listening party, the higher the relevance
Conclusion

This whitepaper has discussed the problem of effectively measuring the quality of VoIP services. The solution is provided by ETSI’s TR 103 639. Annex A defines proven and accurate timeslicing KPIs which complement the well-known and widely used SIP signaling KPIs specified in IETF RFC 6076. Voipfuture Qrystal combines both dimensions into one effective tool.

Qrystal offers fixed time slicing technology, which provides MOS and other metrics to accurately assess in-call user experience. These atomic units of quality can be conveniently aggregated to create statistics for groups of calls and RTP streams without any loss of detail. Based on the time slice information we discussed six KPIs defined in ETSI TR 103 639 Annex A for monitoring voice quality. Each KPI provides a different perspective on the user experience and network performance. Four of these KPIs can be used to measure the media quality at a certain point in the network, e.g. at an interconnection. Two KPIs can be used to measure the end-to-end user experience for groups of calls. All KPIs can be calculated for different grouping criteria, in particular for trunks and routes.

About

Voipfuture is a premium voice quality monitoring vendor developing unique technology for assessing, aggregating, analyzing, and visualizing voice quality information. Voipfuture products offer a precise view on media and control plane to communication service providers, wholesalers and enterprises.

Since its launch, Voipfuture has been at the forefront of voice quality monitoring and continues to redefine Voice over IP by connecting their customers’ view on service quality with high resolution user experience.